22 research outputs found

    Integración de sensores medioambientales con BIM: casos de estudio usando Arduino, Dynamo, y Revit API

    Get PDF
    This paper investigates the feasibility of connecting environmental sensors such as light, humidity, or CO2 receptors to a building information model (BIM). A base case was created in Rhino; using Grasshopper and Firefly, a simple digital model responded to lighting-levels detected by a photoresistor on an Arduino board. The case study was duplicated using Revit Architecture, a popular BIM software, and Dynamo, a visual programming environment, in an innovative application. Another case study followed a similar procedure by implementing the Revit API directly instead of using Dynamo. Then the process was reversed to demonstrate that not only could data could be sent from sensors to change the 3D model, but changes to parameters of a 3D model could effect a physical model through the use of actuators. It is intended that these virtual/physical prototypes could be used as the basis for testing intelligent façade systems before constructing full size mock-ups.Este estudio investiga la posibilidad de conectar sensores ambientales como de luz, humedad, o dióxido de carbono con un modelo de información de un edificio (siglas BIM en inglés). Un caso base fue creado en Rhino; usando Grasshopper and Firefly, donde un simple modelo digital respondió a niveles de luz detectados por un foto resistor en una tarjeta Arduino. El caso de estudio fue duplicado usando Revit Architecture, una herramienta popular en BIM, y Dynamo, un ambiente de programación gráfica, en una creativa aplicación. Un segundo caso de estudio siguió un procedimiento similar implementando Revit API directamente en vez de usar Dynamo. Entonces el proceso fue revertido para demostrar que no solamente la información podría ser enviada desde sensores para cambiar el modelo tridimensional, pero cambios en los parámetros de un modelo tridimensional podrían afectar un modelo físico mediante el uso de actuadores. Se espera que esos modelos virtuales puedan ser usados como base para probar sistemas de fachadas inteligentes antes de la construcción de modelos físicos de tamaño real

    Turkish D-light : accentuating heritage values with daylight

    Get PDF
    Historic buildings have their own cultural identity, which is often related to their aesthetic qualities such as period characteristics (geometry, size, colour, form and shape), materials and construction. Daylight is one of the primary elements contributing to the distinctiveness of the visual environment of many historic buildings, but is rarely considered as one of the components that shape the character of a building when adaptive preservation schemes of historical buildings are planned. Many historic buildings were originally designed to accommodate activities different to their new use and preserving the quality of daylight that originally contributed to their visual identity is a challenging task. Maintaining the ‘day-lit appearance’ of a building can be particularly problematic if the building is to be used as a museum or a gallery owing to the artefacts’ conservation requirements. This work investigated the opportunities of maintaining the original ambient conditions of renovated historical buildings while meeting the required daylight levels of the proposed new use. The study utilised an annual daylight simulation method and hourly weather data to preserve daylight conditions in renovated historic buildings. The model was piloted in a Turkish bathhouse situated in Bursa, Turkey, that is currently under renovation. The simulation model produces 4483 hourly values of daylight illuminance for a period of a whole year using the computer program Radiance. It is concluded that daylight characteristics should be taken into account when developing a renovation scheme. With increasing pressure on valuing historic buildings in many parts of the world, the work reported here should be beneficial to those concerned with the conservation and adaptive reuse of historic buildings. The study findings could also be useful to those interested in predicting potential energy savings by combining daylighting and electric lighting in historic buildings

    What is an intelligent building? Analysis of recent interpretations from an international perspective

    Get PDF
    In recent years, the notion of intelligent buildings (IBs) has become increasingly popular due to their potentials for deploying design initiatives and emerging technologies towards maximized occupants’ comfort and well-being with sustainable design. However, various definitions, interpretations, and implications regarding the essence of IBs exist. Various key performance indicators of IBs have been proposed in different contexts. This study explores the notion of IBs and presents an analysis of their main constituents. Through a comparison of these constituents in different contexts, this study aims to extract the common features of IBs leading to an evolved definition which could be useful as a reference framework for design, evaluation, and development of future IBs. Findings also scrutinize the long run benefits of IBs, while demonstrating the constraints and challenges of the current international interpretations

    Streamlining Digital Modeling and Building Information Modelling (BIM) Uses for the Oil and Gas Projects

    Get PDF
    The oil and gas industry is a technology-driven industry. Over the last two decades, it has heavily made use of digital modeling and associated technologies (DMAT) to enhance its commercial capability. Meanwhile, the Building Information Modelling (BIM) has grown at an exponential rate in the built environment sector. It is not only a digital representation of physical and functional characteristics of a facility, but it has also made an impact on the management processes of building project lifecycle. It is apparent that there are many similarities between BIM and DMAT usability in the aspect of physical modeling and functionality. The aim of this study is to streamline the usage of both DMAT and BIM whilst discovering valuable practices for performance improvement in the oil and gas projects. To achieve this, 28 BIM guidelines, 83 DMAT academic publications and 101 DMAT vendor case studies were selected for review. The findings uncover (a) 38 BIM uses; (b) 32 DMAT uses and; (c) 36 both DMAT and BIM uses. The synergy between DMAT and BIM uses would render insightful references into managing efficient oil and gas’s projects. It also helps project stakeholders to recognise future investment or potential development areas of BIM and DMAT uses in their projects

    Computers in Architecture or “Are we there yet?” a short, rambling, personal essay

    No full text
    White Paper - Reflecting on 25 years of ACADI

    Mission - Method - Madness: ACADIA Conference Proceedings

    No full text
    The papers represent a wide variety of exploration into the uses of computers in architecture. We have tried to impose order onto the collection by organizing them into six sessions: Metaphor, Mission, Method, Modelling for Visualization, Modelling, and Generative Systems. As with any ordering system for such a diverse selection, some session papers are strongly related while others are loosely grouped. Madness, an additional session not in the proceedings, will include short presentations of work in progress. Regarding the individual papers, it is particularly exciting to see research being conducted that is founded on previous work done by others. It is also interesting to note that half of the papers have been submitted by teams of authors. Whether this represents “computer supported cooperative work” remains to be seen. Certainly the work in this book represents an interesting and wide variety of explorations into computer supported design in architecture

    Digital Reconstruction: the Architecture of Raphael Soriano

    No full text
    With the research help of Wolfgang Wagener, the students in our computer graphics class are using formiZ, 3D Studio, and Premiere to document and interpret the work of Raphael Soriano. These images are from a class currently underway in fall semester, 1998, at USC. The students are responsible for modelling, rendering, and animating (with the help of GIFBuilder), their buildings in formiZ, with an emphasis on exterior form. Then they model, render, and animate their projects in 3D Studio concentrating on the interior and interpreting how the building might have been furnished. Other studies covered the use of QuickTime VR and Web page development. Additional work will be done to make the work more “realistic” in response to critiques by Wagener. The next stage of the project is to explain the important features of the building through the use of Premiere. Students may choose to use a purely documentary style or MTV approach or other presentation “style” as long as they clearly define the intent of the presentation and then execute it

    SonoranSystems: Building Simulation Modeling Using a Crassulacean Acid Metabolism Analogy

    No full text
    Biomimicry is one source of inspiration for innovation in the passive thermal design of buildings and of strategies that decrease the need for auxiliary heating and cooling systems. This paper explores the potential for using analogies drawn from Crassulacean acid metabolism (CAM) to create a software program that simulates selected building materials to predict temporal building temperature variations.
    corecore